So “tired light” could explain redshift, light that loses energy over time, but where would that energy be going? Heat loss somehow? Energy can’t be destroyed according to our current understanding so I’m not sure I understand the mechanism of decay
isn’t it the same with dark matter? There is no matter that cant interact with anything.
We tried and tried in big and bigger Collider to find any trace of dark matter. I think scientist begin to find anything else that could explain the cosmos (even if it is flawed), because dark matter seems more and more unlikely, after all those year looking for it
We tried and tried in big and bigger Collider to find any trace of dark matter. I think scientist begin to find anything else that could explain the cosmos (even if it is flawed), because dark matter seems more and more unlikely, after all those year looking for it
We’ve spent years and years eliminating the low hanging fruit – as one should do first – but that doesn’t resolve the dark matter problem at all. The more exotic types are really, really hard to detect in particle colliders the scale of which we can readily build.
It would be nice to say “we looked for it, but it doesn’t seem to exist”, but we can’t say that. We’re nowhere close to saying that. Detecting particles that are hypothesized to only interact via gravity is insanely difficult.
So “tired light” could explain redshift, light that loses energy over time, but where would that energy be going? Heat loss somehow? Energy can’t be destroyed according to our current understanding so I’m not sure I understand the mechanism of decay
isn’t it the same with dark matter? There is no matter that cant interact with anything. We tried and tried in big and bigger Collider to find any trace of dark matter. I think scientist begin to find anything else that could explain the cosmos (even if it is flawed), because dark matter seems more and more unlikely, after all those year looking for it
We’ve spent years and years eliminating the low hanging fruit – as one should do first – but that doesn’t resolve the dark matter problem at all. The more exotic types are really, really hard to detect in particle colliders the scale of which we can readily build.
It would be nice to say “we looked for it, but it doesn’t seem to exist”, but we can’t say that. We’re nowhere close to saying that. Detecting particles that are hypothesized to only interact via gravity is insanely difficult.