I recently read through this and was just curious what others thought the pitfalls or unforseen issues might be with quickly or steadily transitioning to such in a fairly environmentally friendly manner.

Hate the title name, but I think I have to use the article title as the title.

  • Dave.@aussie.zone
    link
    fedilink
    English
    arrow-up
    1
    ·
    2 months ago

    Mainly the issues are about providing ~600 kilowatts for 8 minutes to charge your typical size EV battery.

    A row of 5 chargers of that size soaks up 3MW if they’re all in use, and that’s not something that can be quickly or easily shoehorned into a suburban electricity grid.

    It’s about 500 houses worth of electricity usage, for comparison. For just 5 fast chargers.

    Not to say it’s impossible, but infrastructure doesn’t come cheap, and so it’ll cost quite a bit to cram that 80 percent charge into your car’s battery.

  • stoy@lemmy.zip
    link
    fedilink
    English
    arrow-up
    1
    ·
    2 months ago

    Taking this at face value, I note two things:

    1. This shit would overload our current electricity grid fast!
    2. This is a terrifying ammount of power going into the car.

    As for point 1, the power has to come from somewhere, and our current power grid is already having problems keeping up with current charging currents, and if a battery like this will be able to get charged 80% in 9 min, to use it you have to have a power source to supply that ammount of power in that time.

    This could possibly be mitigated somewhat with huge batteries at the charge station that get charged slowly over time and that is then used to boost the charging of the car, but this would need specialized maintenance and commes with big potential risks.

    As for point 2, the huge ammounts of power being delivered to the car will require a perfect connection between the power source and the car, it will require heavy insulation in and around the car, I wouldn’t want to be within 10 meters of the car while charging due to potential risk of arc flash.

    • SlopppyEngineer@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 months ago

      It’s not such as impressive amount of power compared to existing installations. Say 75 kWh battery. 80% of that would be 60 kWh, charged over 9 minutes. That’s a 400 kW charger. Meanwhile 300 kW are reasonable common and there are a few 500 kW chargers out there. A 500 kW charger would charge the car to 80% in 7 minutes.

      • stoy@lemmy.zip
        link
        fedilink
        English
        arrow-up
        1
        ·
        2 months ago

        Thanks for giving me actual numbers, that makes it sound less insane.

  • disguised_doge@kbin.earth
    link
    fedilink
    arrow-up
    0
    ·
    2 months ago

    I’d be afraid of wearing out a battery super fast. Outside of super long trips that require recharging to arrive, I’d much rather leave a car plugged in overnight rather than need to pay to replace batteries. Also, like @stoy@lemmy.zip said, it’s a lot of power at once that could get dangerous if something goes wrong or overload grids if lots of people start fast charging their cars.

    Though of course I’m sure it’s a great achievement and hopefully the research is useful.

    • cmnybo@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      0
      ·
      2 months ago

      It’s still faster than most lithium batteries can charge. They still have a long ways to go to reach the charge rate of super capacitors though.

      • Eheran@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        arrow-down
        1
        ·
        2 months ago

        Most lithium batteries are real, however, and not a stupid lab thing that only performs in one category and no other, while an are needed in the real world.